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Stochastic nonrelativistic approach to gravity as originating from vacuum zero-point field
van der Waals forces
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We analyze the proposal that gravity may originate from a van der Waals type of residual force between
particles due to the vacuum electromagnetic zero-point field. Starting from the Casimir-Polder integral, we
show that the proposed approach can be analyzed directly, without recourse to approximations previously
made. We conclude that this approach to Newtonian gravity does not work, at least not with this particular
starting point. Only by imposing different or additional physical constraints, or by treating the underlying
dynamics differently than what are embodied in the inherently subrelativistic Casimir-Polder integral, can one
expect to escape this conclusion.
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The present article analyzes in some detail a specific
posal on the physical origin of gravitation@1#. Most physi-
cists regard gravitation as a very basic phenomenon, on
with the electromagnetic, weak, and strong interactio
However, trying to cast all four of these interactions und
one unified theoretical description has proved to be en
mously difficult. This difficulty contributed to Sakharov’
proposal@2# that the gravitational interaction is not a fund
mental interaction at all, but rather that it results from
‘‘change in the action of quantum fluctuations of the vacu
if space is curved.’’ In turn, Sakharov’s idea helped to m
tivate Puthoff’s proposal in 1989 that ‘‘ . . . gravity is a form
of long-range van der Waals force associated with part
Zitterbewegungresponse to the ZP~zero point! fluctuations
of the electromagnetic field’’@3#.

Several possible starting points were mentioned for
gravity related work in Ref.@1#, including ~i! Boyer’s sto-
chastic electrodynamics~SED! calculation of the van de
Waals force between two classical, nonrelativistic, elec
dipole harmonic oscillators@4#, ~ii ! Renne’s related nonrela
tivistic quantum electrodynamic~QED! calculation for a
quantum harmonic-oscillator model@5#, and~iii ! fourth-order
perturbation theory in QED leading to the~subrelativistic!
Casimir-Polder integral@6#. All three of these approache
were discussed and related to each other in Ref.@4#. Since
Puthoff explicitly referred to the first term in the Casimi
Polder integral@7#, let us begin with this expression@6#:
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Here, U(R) is the Casimir-Polder potential between tw
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neutral, polarizable particles,R is the distance between th
particles, andv0 is the resonant frequency associated w
the particles when they are treated as harmonic oscillat
The polarizabilitya is then given bye2/(mv0

2).
A number of approximations were made to Eq.~1! in Ref.

@1#. Only the first term in brackets in Eq.~1! was considered
and v050 was substituted into the integrand, based on
argument of a small effective resonant frequency. The up
limit of ` was replaced by an upper cutoff limituc5vc /c.
Some averaging arguments were then made that led to aR
effective potential between particles. Later, in response@8# to
a criticism by Carlip@9# on the calculational procedure of th
averaging steps, Puthoff gave some additional arguments
different reasoning to still yield this 1/R effective potential,
now emphasizing that there should be physical reasons
imposing cutoffs in the integration that enable this 1/R form
to be obtained.

We wish to make two key points here. First, one can
simply extract the first term in Eq.~1!, as all of the terms
contribute on a roughly equal footing in the large distan
regime. Second, Eq.~1! can be fully evaluated, as will be
done here, and compared with any proposed approximat
to the full integral. Unfortunately, as will be seen, the a
proximations in Refs.@1# and @8# do not hold, at least no
without introducing additional assumptions that imply si
nificantly different physical effects not embodied within th
inherently subrelativistic full Casimir-Polder integral.

To begin, we make the substitution ofw5uR in Eq. ~1! to
obtain
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Thus,U(R) has a functional form of 1/R3 times an integral
that depends onv0R/c. A second argument to this integra
could also be included@i.e., I (b,wc)# if we replace the uppe
integration limit of infinity by a cutoff of wc5ucR
5vcR/c, such as might be imposed if the ZP spectrum w
thought to be cutoff at sufficiently large frequencies@10#.
Without imposing this cutoff, however, then it is easy to s
from the above that if a 1/R potential is to emerge for the
form of U(R), under whatever limiting conditions one im
poses~e.g., largeR, smallv0, etc.!, thenI (b) must result in
a b12 dependence.

However, a full evaluation of Eq.~3! does not reveal any
such dependency. As discussed in Ref.@11#, each term in Eq.
~3! can be analytically evaluated. Indeed, Fig. 1 in Ref.@11#
shows a plot of ln@I(b)# versus ln(b), revealing thatI (b) is
bounded from above by two curves thatI (b) asymptotically
approaches at large and small values ofb. For large b
5v0R/c, the bounding curve is the retarded van der Wa
expression ofI r(b)[23/4b24, yielding an overall 1/R7 de-
pendence forU(R) in this regime. At smallb, I (b) is
bounded by the unretarded van der Waals expression
I ur(b)[3p/4b23, yielding an overall 1/R6 dependence for
U(R) in this regime. At no point either between these e
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tremes, or at these extremes, is there any behavior tha
motely approaches ab12 dependence that would be require
to yield a net 1/R dependence forU(R).

Reference@11# contains a detailed analysis on howI r(b)
and I ur(b) can be extracted from Eq.~3!. Moreover, the
question is examined on what happens if an upper cutof
wc5vcR/c is imposed in the integration in Eq.~3!. As
shown there, if min(2v0,5c/R)&vc , wherev0 is the reso-
nant frequency of the oscillator system, then the integrati
in Eqs. ~1! or ~3! will be barely affected. Since propose
upper frequency limits for the ZP spectrum are far, far larg
than this restriction@10#, then we must conclude that impos
ing a realistic upper frequency cutoff in the integration in E
~1! still yields that a Newtonian potential does not arise fro
the Casimir-Polder integral. An energy based argument
cussed in Ref.@11# helps to support this point. It displays th
remarkable implausibility of the low frequencies van d
Waals force approach to Newtonian gravity formulated
Ref. @8# in response to the objections of Ref.@9#. In conclu-
sion, barring the introduction of additional physical assum
tions into the analysis in Refs.@1# and@8#, the specific argu-
ment presented there involving an average force induced
ZP fields, will not yield a Newtonian gravitational force sig
nature.
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