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Abstract

We study a novel set of gravitational field configurations, called “dipolar zero modes”,
which give an exactly null contribution to the Einstein action and are thus candidates to
become large fluctuations in the quantized theory. They are generated by static unphysical
sources satisfying (up to terms of order G2) the simple condition

∫
d3xT00(x) = 0. We give

two explicit examples of virtual sources: (i) a “mass dipole” consisting of two separated mass
distributions with different signs; (ii) two concentric “+/- shells”. The field fluctuations can
be large even at macroscopic scale. There are some, for instance, which last ∼ 1 s or more and
correspond to the field generated by a virtual source with size ∼ 1 cm and mass ∼ 106 g. This
appears paradoxical, for several reasons, both theoretical and phenomenological. We also give
an estimate of possible suppression effects following the addition to the pure Einstein action
of cosmological or R2 terms.

04.20.-q Classical general relativity.
04.60.-m Quantum gravity.

1 Introduction

Vacuum fluctuations are an essential ingredient of any quantum field theory, and also in quantum
gravity they play an important role. The presence in the gravitational action of a dimensional
coupling of the order of 10−33 cm – the “Planck length” – indicates that the strongest fluctuations
occurr at very small scale: this is the famous “spacetime foam”, first studied by Hawking and
Coleman through functional integral techniques [1].

More recently, Ashtekar and others [2] analysed the possible occurrence of large fluctuations
in 2+1 gravity coupled to matter. In this case the theory is classically solvable and admits a
standard Fock-space quantization. In 3+1 dimensions, however, Einstein quantum gravity is a
notoriously intractable theory. Exact implementation of the diffeomorphism invariance, according
to Wheeler’s geometrodynamical view of gravity, leads to an ample theory, called “loop quantum
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gravity”, of difficult physical interpretation [3]. States, transition amplitudes, time... : everything
is highly non-trivial in quantum gravity.

The non-renormalizable UV divergences of the perturbative expansion may indicate that
quantum gravity is not a fundamental microscopic theory, but an effective low-energy limit [4], and
will be eventually replaced by a theory of strings or branes. On the other hand, it is known from
particle physics that the Einstein lagrangian can be obtained, without any geometrodynamical
assumption, as the only one which correctly accounts for a gravitational force mediated by helicity-
2 particles [5]. For this reason, it is important to investigate – besides the standard perturbative
expansion – all the basic properties of the Einstein lagrangian. In the past years we took an
interest into Wilson loops [6], vacuum correlations at geodesic distance [7], and the expression of
the static potential through correlations between particles worldlines [8].

In this work we study a set of gravitational field configurations, called “dipolar zero modes”,
which were not considered earlier in the literature. They give an exactly null contribution to the
Einstein action, being thus candidates to become large fluctuations in the quantized theory. We
give an explicit expression, to leading order in G, for some of the field configurations of this
(actually quite large) set. We also give an estimate of possible suppression effects following the
addition to the pure Einstein action of cosmological or R2 terms.

Our zero modes have two peculiar features, which make them relatively easy to compute:
(i) they are solutions of the Einstein equations, though with unphysical sources; (ii) their typical
length scale is such that they can be treated in the weak field approximation. We shall see that
these fluctuations can be large even on a “macroscopic” scale. There are some, for instance, which
last ∼ 1 s or more and correspond to the field generated by a virtual source with size ∼ 1 cm and
mass∼ 106 g. This seems paradoxical, for several reasons, both theoretical and phenomenological.
We have therefore been looking for possible suppression processes. Our conclusion is that a
vacuum energy term (Λ/8πG)

∫
d4x

√
g(x) in the action could do the job, provided it was scale-

dependent and larger, at laboratory scale, than its observed cosmological value. This is at present
only a speculative hypothesis, however.

The dipolar fluctuations owe their existence to the fact that the pure Einstein lagrangian
(1/8πG)

√
g(x)R(x) has indefinite sign also for static fields. It is well known that the non-

positivity of the Einstein action makes an Euclidean formulation of quantum gravity difficult; in
that context, however, the “dangerous” field configurations have small scale variations and could
be eliminated, for instance, by some UV cut-off. This is not the case of the dipolar zero modes.
They exist at any scale and do not make the Euclidean action unbounded from below, but have
instead null (or � h̄) action.

A static virtual source will generate a zero mode provided it satisfies the condition∫
d3xT00(x) = 0 up to terms of order G2. The cancellation of the terms of order G (Section

2.2) is important from the practical point of view. In our earlier work on dipolar fluctuations
[9] we developed some general remarks based on the form of Einstein equations, and the result
was that in order to generate a zero mode the positive and negative masses of the source should
differ by a quantity of order G, namely ∼ Gm2/r ∼ mrSchw./r; this is very small for weak fields,
but sufficient to produce a “monopolar” component which complicates the situation. Explicit
calculations in Feynman gauge now have shown that the terms of order G cancel out exactly.
This opens the way to an amusing “virtual source engineering” work, to find explicitly some zero
modes and give quantitative estimates in specific cases.

When analysing the Wilson loops, we had already pointed out some differences in the
behavior of gravity and ordinary gauge theories, essentially due to the different signs of the
allowed physical sources. Here, again, these differences are apparent. In gauge theories the real
sources can be both positive and negative; therefore one can close two Wilson lines at infinity and
find the static potential. The virtual sources cannot give rise to strong static dipolar fluctuations,
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because the lagrangian is quadratic in the fields. On the contrary, in gravity there are no real
negative sources, the potential is always attractive and Wilson lines cannot be closed; however,
since the lagrangian on-shell is indefinite in sign and equal to

√
g(x)TrT (x), we can construct

static zero modes employing +/- virtual sources. Then, of course, we can Lorentz-boost these
modes in all possible ways.

The paper is composed of two main Sections. Section 2 is devoted to the analysis of the
dipolar fields and virtual sources. We start from some general features and then focus on two
examples. Section 3 contains an extensive discussion. For a summary of the main contents see
also the Conclusions Section.

1.1 Conventions. Sign of Λ vs. its classical effects

Let us define here our conventions. We consider a gravitational field in the standard metric
formalism; the action includes possibly a cosmological term:

S = SEinstein + SΛ (1)

SEinstein = − 1
16πG

∫
d4x

√
g(x)R(x) (2)

SΛ =
Λ

8πG

∫
d4x

√
g(x) (3)

with gµν(x) = ηµν + hµν(x).

By varying this action with respect to δgµν(x) and using the relation
√
g

δgµν
=

1
2
√
ggµν (4)

one finds the field equations

Rµν(x)− 1
2
gµν(x)R(x) + Λgµν(x) = −8πGTµν(x) (5)

The energy-momentum tensor of a perfect fluid has the form

[Tµν] = diag(ρ, p, p, p) (6)

For a zero-pressure “dust” one has p = 0.

Now let us introduce a signature for the metric. Articles in General Relativity or cosmology
use most often the metric with signature (−,+,+,+), and the experimental estimates of Λ are
mainly referred to this metric. It is important to fix the sign of the cosmological term with
reference to the metric signature in a way which is clear both formally and intuitively.

If spacetime is nearly flat, we can take the cosmological term in (5) to the r.h.s., set
gµν(x) = ηµν and regard it as a part of the source. We obtain, in matrix form[

Rµν −
1
2
gµνR

]
= −{diag(−Λ,Λ,Λ,Λ)+ 8πGdiag(ρ, p, p, p)} [metric (−,+,+,+)] (7)

Which sign for Λ allows to obtain a static solution? Even without finding explicitly this solution,
we see that for Λ > 0 the “pressure” due to the cosmological term is positive and can sustain the
system against gravitational collapse – especially in the case of a zero-pressure dust with p = 0.
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At the same time, the mass-energy density due to the cosmological term is negative and subtracts
from ρ, still opposing to the collapse.

In conclusion, with this convention on the metric signature a static solution of Einstein
equations with a cosmological term can be obtained for Λ > 0. If we are not interested into
a static solution, but into an expanding space à la Friedman-Walker, in that case the effect of
a cosmological term with Λ > 0 will be that of accelerating the expansion. The most recent
measurements of the Hubble constant from Type Ia supernovae [10, 11] suggest indeed that there
is a cosmologically significant positive Λ in our universe.

In Quantum Field Theory, on the other hand, the signature (+,−,−,−) is more popular,
such that the squared four-interval is x2 = t2 − |x|2. Since we shall introduce some coupling of
gravity to matter fields in the following, and make a correspondence to the Euclidean case, we
prefer to use this latter convention. We then have, instead of eq. (7)[

Rµν −
1
2
gµνR

]
= −{diag(Λ,−Λ,−Λ,−Λ) + 8πGdiag(ρ, p, p, p)} [metric (+,−,−,−)] (8)

In this case, a static solution – or an accelerated expansion – corresponds to Λ < 0.

2 The dipolar fluctuations

We consider the functional integral of pure quantum gravity, which represents a sum over all
possible field configurations weighed with the factor exp[ih̄SEinstein] and possibly with a factor
due to the integration measure. The Minkowski space is a stationary point of the vacuum action
and has maximum probability. “Off-shell” configurations, which are not solutions of the vacuum
Einstein equations, are admitted in the functional integration but are strongly suppressed by the
oscillations of the exponential factor.

Due to the appearance of the dimensional constant G in the Einstein action, the most
probable quantum fluctuations of the gravitational field “grow” at very short distances, of the
order of LPlanck =

√
Gh̄/c3 ∼ 10−33 cm. This led Hawking, Coleman and others to depict

spacetime at the Planck scale as a “quantum foam” [1], with high curvature and variable topology.
For a simple estimate (disregarding of course the possibility of topology changes, virtual black
holes nucleation etc.), suppose we start with a flat configuration, and then a curvature fluctuation
appears in a region of size d. How much can the fluctuation grow before it is suppressed by the
oscillating factor exp[iS]? (We set h̄ = 1 and c = 1 in the following.) The contribution of the
fluctuation to the action is of order Rd4; both for positive and for negative R, the fluctuation
is suppressed when this contribution exceeds ∼ 1 in absolute value, therefore |R| cannot exceed
∼ G/d4. This means that the fluctuations of R are stronger at short distances – down to LPlanck,
the minimum physical distance.

2.1 General features

There is another way, however, to obtain vacuum field configurations with action smaller than 1
in natural units. This is due to the fact that the Einstein action has indefinite sign. Consider the
pure Einstein equations (i.e. without the cosmological term; compare Section 1.1)

Rµν(x)− 1
2
gµν(x)R(x) = −8πGTµν(x) (9)
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and their covariant trace

R(x) = 8πGTrT (x) = 8πGgµν(x)Tµν(x) (10)

Let us consider a solution gµν(x) of equation (9) with a source Tµν(x) obeying the additional
integral condition ∫

d4x
√
g(x)TrT (x) = 0 (11)

Taking into account eq. (10) we see that the Einstein action (2) computed for this solution is
zero. Condition (11) can be satisfied by energy-momentum tensors that are not identically zero,
provided they have a balance of negative and positive signs, such that their total integral is zero.
Of course, they do not represent any acceptable physical source, but the corresponding solutions
of (9) exist nonetheless, and are zero modes of the action.

We shall give two explicit examples of virtual sources: (i) a “mass dipole” consisting of two
separated mass distributions with different signs; (ii) two concentric “+/- shells”. In both cases
there are some parameters of the source which can be varied: the total positive and negative
masses m±, their distance, the spatial extension of the sources.

The procedure for the construction of the zero mode corresponding to the dipole is the
following. One first considers Einstein equations with the virtual source without fixing the pa-
rameters yet. Then one solves them with a suitable method, for instance in the weak field
approximation when appropriate. Finally, knowing gµν(x) one adjusts the parameters in such a
way that condition (11) is satisfied.

2.2 Computation of
√
g(x)g00(x)

Now suppose we have a suitable virtual source, with some free parameters, and we want to adjust
them in such a way to generate a zero-mode gµν(x) for which SEinstein[g] = 0. We shall always
consider static sources where only the component T00 is non vanishing. The action of their field
is

Szero−mode = −
∫
d4x

√
g(x)g00(x)T00(x) (12)

To first order in G, the field hµν(x) generated by a given mass-energy distribution Tµν(x)
is given by an integral of the field propagator Pµνρσ(x, y) over the source:

hµν(x) =
∫
d4yPµνρσ(x, y)T ρσ(y) (13)

where in Feynman gauge Pµνρσ(x, y) is given, with our conventions on the metric signature, by

Pµνρσ(x, y) =
2G
π

ηµρηνσ + ηµσηνρ − ηµνηρσ
(x− y)2 + iε

(14)

Computing the integral over time in eq. (13) we obtain for our source

hµν(x) =
∫ +∞

−∞
dy0

∫
d3yT 00(y)Pµν00(x, y)

=
2G
π

(2ηµ0ην0 − ηµνη00)
∫ +∞

−∞
dy0

∫
d3y

T 00(y)
(x0 − y0)2 − (x− y)2 + iε

= 2G(2ηµ0ην0 − ηµνη00)
∫
d3y

T 00(y)
|x− y| (15)
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Thus we have

√
g(x)g00(x) =

[
1 +

1
2

Trh(x) + o(G2)
] [

1 + h00(x) + o(G2)
]

= 1 +
1
2

Trh(x) + h00(x) + o(G2)

= 1 + 2G
[

1
2

(2ηµ0ην0 − ηµνη00)ηµν + (η00)2
] ∫

d3y
T 00(y)
|x− y| + o(G2)

= 1 + o(G2) (16)

and finally the action is

Szero−mode = −
∫
d4xT00(x) + o(G2) (17)

Therefore provided the integral of the mass-energy density vanishes, the action of our field
configuration is of order G2, i.e., practically negligible, as we check now with a numerical example.
Let us choose the typical parameters of the source as follows:

r ∼ 1 cm
m ∼ 10k g ' 1037+k cm−1 (18)

(implying rSchw./r ∼ 10−29+k). We assume in general an adiabatic switch-on/off of the source,
thus the time integral contributes to the action a factor τ . We shall keep τ (in natural units)
very large, in order to preserve the static character of the field. Here, for instance, let us take
τ ∼ 1 s ' 3 · 1010 cm. With these parameters we have

Sorder G
2

zero−mode ∼ τ
G2m2

±
r3

∼ 10−20+3k (19)

Thus the field generated by a virtual source with typical size (18), satisfying the condition∫
d3xT 00(x) = 0, has negligible action even with k = 6 (corresponding to an apparent mat-

ter fluctuations with a density of 106 g/cm3 !) This should be compared to the huge action of
the field of a single, unbalanced virtual mass m; with the same values we have

Ssingle m = − 1
8πG

∫
d4x

√
g(x)R(x) = −

∫
d4x

√
g(x)TrT (x) ∼ τm+ o(G2) ∼ 1047+k (20)

This example shows that the cancellation of the first order term in (16) allows to obtain a
simple lower bound on the strength of the fluctuations. In principle, however, one could always
find all the terms in the classical weak field expansion, proportional to G, G2, G3, etc., and adjust
T00 as to have Szero−mode = 0 exactly. They can be represented by those Feynman diagrams of
perturbative quantum gravity which contain vertices with 3, 4 ... gravitons but do not contain
any loops. The ratio between each contribution to S and that of lower order in G has typical
magnitude rSchw./r, where rSchw. = 2πGm± is the Schwarzschild radius corresponding to one of
the two masses and r is the typical size of the source. For a wide range of parameters, this ratio
is very small, so the expansion converges quickly. From now on we agree that the “o(G2)” term
in eq. (17) comprises all the terms quadratic in the field, like for instance that arising from the
expansion of

√
g(x).
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2.3 Explicit examples of static virtual sources

(i) The mass dipole

As an example of unphysical source which satisfies (11) one can consider the static field
produced by a “mass dipole”. Certainly negative masses do not exist in nature; here we are
interested just in the formal solution of (9) with a suitable Tµν, because for this solution we
have

∫
d4x
√
gR = 0. Let us take the following Tµν of a static dipole centered at the origin

(m+, m− > 0):

Tµν(x) = δµ0δν0

[
m+

r3
+

f+(x)− m−
r3
−
f−(x)

]
(21)

where
f±(x) ≡ f

(
x± a
r±

)
(22)

and f(x) is a smooth test function with range ∼ 1 and normalized to 1, which represents the
mass density. Thus we have a positive source of mass m+ and radius r+ (placed at x = −a) and
a negative source with mass −m− and radius r− (placed at x = a). The radii of the two sources
are such that a � r± � rSchw., where rSchw. is the Schwarzschild radius corresponding to the
mass m+.

The mass m− is in general slightly different from m+ and chosen in such a way to compen-
sate the small difference, due to the

√
gg00 factor, between the integrals

I+ =
∫
d4x

√
g(x)g00(x)

f+(x)
r3

+

and I− =
∫
d4x

√
g(x)g00(x)

f−(x)
r3
−

(23)

The action of the dipole is

SDipole = −
∫
d4xT00(x) = −τ(m+ −m−) + o(G2) (24)

The condition for SDipole = 0 is m+ = m−, apart from terms of order G2 (i.e., our dipoles have
in reality a tiny monopolar component).

Also note that the values of the masses and the radii r± (both of order r) can vary in a
continuous way – under the only condition that m+ = m−. This implies that these (non singular)
“dipolar” fields constitute a subset with nonzero volume in the functional integration. Actually,
they are only a subset of the larger class of solutions of the Einstein equations with sources
satisfying eq. (11).

(ii) The concentric +/- shells

Consider two concentric spherical shells in contact, the internal one with radii r1, r2, and
the external one with radii r2, r3 (r1 < r2 < r3). Let the internal shell have mass density ρ1 and
the external shell density ρ2, with opposite sign. The condition for zero action requires, up to
terms of order G2, that the total positive mass equals the total negative mass, i.e.,

ρ1(r3
2 − r3

1) + ρ2(r3
3 − r3

2) = 0 (25)

(more generally, if the densities ρ1 and ρ2 are not constant throughout the shells, one has a
suitable integral condition).

The spherical symmetry of the corresponding field configuration offers some advantages
when one computes the contributions to the cosmological term and the Newtonian self energy
(compare Sect. 3.1).
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2.4 Contribution of virtual dipoles to the cosmological and R2 terms

In the previous Sections we have seen that the pure Einstein action admits zero-modes having the
form of virtual dipole field configurations with a small monopole residual. These field configura-
tions are characterized by the parameters r± (radii of the virtual +/- sources), a (distance between
the sources) and m± (masses of the sources). We worked out these configurations as solutions of
the linearized Einstein equations. We also checked that the weak field approximation is appro-
priate in a whole “macroscopic” range of the parameters r±, a and m. This is possible because
these configurations (unlike the spacetime foam at the Planck scale) yield

∫
d4x

√
g(x)R(x) = 0

thanks to a cancellation between the R contributions in two distinct regions of space. Similar
considerations can be done for the field of the concentric +/- shells.

It is natural to ask whether the dipolar fluctuations can be suppressed by other terms
present in the gravitational action besides the pure Einstein term. Possible candidates are the
R2 terms (usually relevant, however, only at very small distance) and the cosmological term. Let
us first look at the latter (see also our general remarks on the role of a cosmological constant in
quantum gravity in Section 3.2).

When a static source is spherically symmetric, we can use outside it the exact Schwarzschild
metric with invariant interval

ds2 =
(

1− 2GM
r

)−1

dt2 −
[(

1− 2GM
r

)
dr2 + r2dθ2 + r2 sin2 θdφ2

]
(26)

The determinant of this metric equals that of flat space, so the presence of one single spherically-
symmetric source does not change the volume of the outer space and does not contribute to the
cosmological term.

We shall therefore handle separately the cases of the mass dipole and the concentric +/-
shells.

The mass dipole

In the linearized approximation the integral SΛ = (Λ/8πG)
∫
d4x

√
g(x) for a dipolar fluc-

tuation can be splitted into the sum of the integrals of the field h+(x) generated by the positive
mass and the field h−(x) generated by the negative mass. Both fields are spherically symmetric,
thus there is no contribution of order G to SΛ outside the sources.

To order h2 ∼ (Gm)2 the field outside the sources differs from the sum of their Schwarzschild
fields, and we do have some contributions to the cosmological term, but they are very small. One
finds, inserting the numerical values (18) and the current estimate for |Λ|G, namely |Λ|G ∼ 10−116

∆SΛ,outside ∼ τ2|Λ|Gm2 ∼ 10−22+2k (27)

On the other hand, the integrals of
√
g(x) inside the sources contribute to the action already

at first order in hµν . Let us use the explicit solutions in Feynman gauge found in the previous
section and disregard the effect of the positive source inside the negative one and viceversa. (This
will give small corrections proportional to a/r±, but does not change the magnitude orders.) We
denote by ω(x) the characteristic function of a 3-sphere with unit radius placed at the origin of
the coordinates, and define

ω±(x) ≡ ω
(

x± a
r±

)
(28)

We then have, to leading order

∆SΛ,inside =
Λ

8πG

[∫
d4x

1
2

Trh+(x)ω+(x) +
∫
d4x

1
2

Trh−(x)ω−(x)
]
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=
Λ

8πG
τ

2

∫
d3xω+(x)

(
−4m+G

r3
+

)∫
d3y

f+(y)
|x− y| +

+
Λ

8πG
τ

2

∫
d3xω+(x)

(
4m−G
r3
−

)∫
d3y

f−(y)
|x− y| (29)

In the double integrals we can suitably shift the variables by ±a and re-scale them as x→ x′r±,
y → y′r±, obtaining a pure number ξ of order 1 multiplied by r5

+ and r5
−, respectively. Finally

we obtain
∆SΛ,inside = − ξ

4π
τΛ(m+r

2
+ −m−r2

−) (30)

with
ξ =

∫
d3x′

∫
d3y′

ω(x′)f(y′)
|x′ − y′| (31)

With the usual values we find, apart from an adimensional constant of order 1

∆SΛ,inside ∼ 10−3+k (32)

This means that a relatively small increase in the value of |Λ| would be sufficient to suppress the
strongest fluctuations (except for those with r+ = r− exactly).

The concentric +/- shells

In this case ∆SΛ,outside vanishes exactly. Inside the source we have to leading order

∆SΛ,inside =
Λτ

8πG
1
2

∫
d3xTrh(x) (33)

Since Trh(x) = 4VNewt.(x) (compare eq. (15)), the integral is a special case of one we shall
compute in Section 3.1 The result is

∆SΛ,inside = Λτmr2Q(β) (34)

where r2 ≡ r, r3 ≡ βr and Q(β) is an adimensional polynomial which can be either positive or
negative, depending on the ratio |ρ1|/|ρ2|. The magnitude order is the same as for the dipole.

Finally, a word about the R2 term. It is typically of the form

SR2 = α
∫
d4x

√
g(x)R2(x) (35)

where α is a (small) adimensional coupling and R2 can be replaced by more complex scalars like
RµνρσR

µνρσ etc. For an order of magnitude estimate it suffices to multiply the square of the
curvature in the sources, namely R2 ∼ (GTrT )2 = (Gm/r3)2 by their volume V (4) ∼ τr3. We
find in this way, still with the same parameters,

SR2 ∼ ατG2m
2

r3
∼ α10−48+2k (36)

Thus the allowed values for m are very large, i.e., there is no significant suppression of the virtual
dipoles by the R2 terms at this scale.
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3 Discussion

3.1 Why are these fluctuations paradoxical

The order of magnitude estimates given in the previous Section show that the dipolar vacuum
fluctuations allowed in the functional integral formulation of pure Einstein quantum gravity (i.e.,
such to give S � 1 in natural units) are very intense also at macroscopic scale.

One may think that such large fluctuations, if real, would not remain unnoticed. Even
though vacuum fluctuations are homogeneous, isotropic and Lorentz-invariant, they could mani-
fest themselves as noise of some kind. Most authors are skeptic about the possibility of detecting
the noise due to spacetime foam [12, 13], but the virtual dipole fluctuations described in this
paper are much closer to the laboratory scale. Observable quantities, like for instance the in-
variant intervals ds2 = gµνdx

µdxν and the connection coefficients Γρµν could then exhibit strong
fluctuations.

The existence of these fluctuations would be paradoxical, however, already at the purely
conceptual level. Common wisdom in particle physics states that the vacuum fluctuations in
free space correspond to virtual particles or intermediate states which live very short, i.e., whose
lifetime is close to the minimum allowed by the Heisenberg indetermination relation. Let us first
give a brief formal justification of this rule, and then compare it to our dipole fluctuations.

It is often the case that a quantum field theory has an imaginary time formulation, where
the (positive-definite) lagrangian density corresponds to the original hamiltonian density H . For
a scalar field, for instance, one has H = (1/2)[(∂φ)2 + (gradφ)2 + m2φ2] and the Euclidean
functional integral is given by zEucl =

∫
d[φ] exp[−

∫
dt
∫
d3xH(t, x)]. A field fluctuation localized

to a region of size τV (3) is weighed in the functional integral by the factor exp[−τV (3)H ] =
exp[−τE] and is thus effectively suppressed unless approx. τE < 1. Another notable example
is the electromagnetic field. Also in this case the analytical continuation of the lagrangian L =
(−1/8π)[E2 −B2] yields the energy density H = (1/8π)[E2 + B2]; to check this, one just needs
to impose the A0 = 0 gauge and remember that only the electric field contains time derivatives
of A.

Now let us estimate the product Eτ for the dipolar fluctuations. The total energy of a static
gravitational field configuration vanishing at infinity is the ADM energy. Since the source of a
dipolar fluctuation satisfies the condition

∫
d3xT00(x) = 0 up to terms of order G2, the dominant

contribution in the ADM energy is the Newtonian binding energy [14].

The binding energy of the field generated by a source of mass m and size r is of the order
of E ∼ −Gm2/r, where the exact proportionality factor depends on the details of the mass
distribution. For a dipolar field configuration characterized by masses m+ and m− and radii of
the sources r+ and r−, the total gravitational energy is of the order of

Etot ∼ −Gm2
±

(
1
r−

+
1
r+

)
(37)

(disregarding the interaction energy between the two sources, proportional to 1/a � 1/r). For
an order of magnitude estimate with the parameters (18) we can suppose that r+ and r− are
both of the order of 1 cm. We then have Etot ∼ Gm2

± ∼ 1012+k cm−1. Remembering that k can
take values up to k = 6, we find for these dipolar fluctuations τEtot ∼ 1028!

(For comparison, remember the case of a “monopole” fluctuation of virtual mass m and
duration τ . The condition S < 1 implies τm < 1. The dominant contribution to the ADM energy
is just m, thus the rule Eτ < 1 is respected.)

10



The Newtonian binding energy of the concentric +/- shells is given, like in electrostatics,
by the formula E = (1/2)

∫
d3xρ(x)VNewt.(x). For general values r1, r2, r3 of the radii and ρ1,

ρ2 of the densities (constrained by the zero total mass condition (25)), one obtains a complicated
expression, namely

E =
πρ1

90r2
2

{ρ2(r2
2 + r2r3 + r2

3)(6r5
2 − 15r4

2r3 + 10r3
2r

2
3 − r5

3)− ρ1[9r7
1 − 11r6

1r2 − r5
1r

2
2 − 10r4

1r
3
2 +

+5r3
1(r4

2 + 2r3
2r3 + 2r2r

3
3 − 2r4

3) + r2
1r

5
2 + r1r

6
2 + 2r3

2(3r4
2 − 5r3

2r3 − 5r2r
3
3 + 5r4

3)]} (38)

We can study the sign and magnitude of E setting r2 = r, r1 = αr (0 < α < 1) and r3 = βr
(β > 1). We express α in terms of β using (25) and finally obtain

E =
Gm

r
P (β) (39)

where P (β) is a polynomial which is positive if |ρ1| > |ρ2| (the repulsion between the two shells
predominates) and negative if |ρ1| < |ρ2| (the attraction inside each shell predominates).

This result is quite interesting, because

(i) Unlike the formula for the energy of the dipolar field, it does not contain any approxi-
mation to order G.

(ii) From the physical point of view it is reasonable to admit – remembering that we are
in a weak-field regime and forgetting general covariance for a minute – that the binding energy
is localized within the surface of the outer shell (the field is o(G2) outside). The energy density
is therefore of the order of |E|r3 ∼ Gm

r4 ∼ 1029+k cm−4 (with the parameters (18)), and can take
both signs. This value looks quite large, even though the Ford-Roman inequalities [15] or similar
bounds do not apply to quantum gravity, where the metric is not fixed but free to fluctuate, and
there is in general no way to define a local energy density (except outside the sources – see [16]).

3.2 A scale-dependent Λ ?

We have seen that a vacuum energy or cosmological term in the gravitational action is able to
cut-off part of the dipolar fluctuations. This works better at large scales, because the Λ-term does
not contain any field derivatives. We may also hypothesize that the effective value of Λ at scales
of the order of 1 cm is larger than the value observed at cosmological scale. In the following we
summarize some theoretical arguments supporting this idea. One would have, in other words, a
small, negative, scale-dependent Λeff , a sort of residual of purely gravitational self-adjustment
processes taking place at the Planck scale.

We already mentioned the role played by the cosmological constant at the classical level.
In particular, looking for solutions of Einstein equations of the Friedman-Robertson-Walker type,
i.e. with an expanding space, one finds well-defined relations between the Hubble constant, the
density of various kinds of matter, and Λ [10, 11]. In the last years, most estimates have given a
negative value Λ (in our conventions) of the order of 10−50 cm−2.

The effect of a cosmological term in the quantum field theory of gravity is less clear. On one
hand, there are some “naive” expectations; on the other hand, formal results which are however
difficult to interpretate.

The naive view consists in disregarding the effect of the cosmological term on the global
geometry of spacetime, as compared to the effect of matter or pre-existing (null) curvature.
Therefore one just expands the gravitational action around a flat background and studies quantum
fluctuations. These are determined to leading order by the part of the action quadratic in hµν .
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In spite of the different tensorial form of the Einstein term
∫
dx
√
gR and the cosmological term∫

dx
√
g, their quadratic parts are similar. In Feynman gauge they are both proportional to the

quantity
[
2Trh2 − (Trh)2

]
, multiplied by ∂µ∂µ in the case of the Einstein term and by Λ in the

case of the cosmological term. Thus in this approximation the cosmological term corresponds to a
mass term for the graviton; the mass is real for Λ < 0 and imaginary for Λ > 0 (in our conventions
– see Section 1.1). This implies respectively a finite range propagator, á la Yukawa, with range of
the order of |Λ|−1/2, or the existence of unstable modes growing in time like real exponentials [17].
Intuitively, the reason for this behavior is clear (see also [18]), because a positive Λ corresponds
to a positive mass-energy density, which is gravitationally unstable.

In pure quantum gravity the curvature of the classical background is solely determined by
Λ, and therefore the previous approach does not really make sense. For instance, if Λ < 0, then
the solution of the classical Einstein equations is a spacetime with curvature radius of the order
of Λ−1/2; the Yukawa range predicted by the flat space expansion would then coincide with the
size of the universe. There have thus been some attempts at quantizing the gravitational action
with respect to a background with constant curvature (de Sitter or anti-de Sitter). The theory
is mathematically very difficult [19]; there is some evidence, however, that the graviton stays
massless, while novel strong infrared effects would arise (due to the dimensional self-coupling Λ),
which might force the renormalized value of Λ to “relax towards zero”.

The Euclidean theory of pure quantum gravity is obtained from the Lorentzian theory in our
conventions with the standard analytical continuation tLor → −itEucl. In the lattice approach
in 4D [20], G and Λ are entered as bare couplings at the beginning, and then the discretized
space evolves according to a Montecarlo algorithm. Unlike in perturbation theory, where a flat
background is introduced by hand, here flat space appears dynamically; namely, the average
value of the curvature is found to vanish on a transition line in the bare-couplings space. This
line separates a “smooth-phase”, with small negative curvature, from a “rough”, collapsed, un-
physical phase, with large positive curvature. The collapse can be understood observing that
the cosmological action is of the form ΛV (4), where V (4) is the volume of the lattice, thus when
Λeff = 〈R〉 is positive, the volume tends to decrease.

It turns out that as the continuum limit is approached, the adimensional product |Λeff |Geff
behaves like

|Λeff |Geff ∼ (l0/l)γ (40)

where l is the scale, l0 is the lattice spacing, γ a critical exponent and the sign of Λeff is negative.
Furthermore, one can reasonably assume that l0 ∼ LPlanck, and that the scale dependence of
Geff is much weaker than that of Λeff .

A scale dependence of Λeff like that in eq. (40) also implies that any bare value of Λ, ex-
pressing the energy density associated to the vacuum fluctuations of the quantum fields including
the gravitational field itself, approaches zero at long distances just by virtue of the gravitational
dynamics, without any need of a fine tuning. One would have, in other words, a purely gravita-
tional solution of the cosmological constant problem.

It is remarkable that the conclusions of Euclidean lattice theory concerning the instability
with Λ > 0 agree qualitatively with those obtained in the naive approach; and this in spite of the
fact that the above argument concernig the volume of spacetime does not hold in the Lorentzian
theory because in this case both positive and negative volume variations are suppressed by the
oscillating factor exp[iS] in the functional integral.
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3.3 Local changes in Λ

The ability of the Λ-term to cut-off part of the dipole fluctuations has an inevitable consequence.
Consider the coupling of gravity to a scalar field φ, with lagrangian density

L =
1
2

(
∂αφ∂

αφ−m2φ2
)

=
1
2

[(
∂φ

∂t

)2

− (gradφ)2 −m2φ2

]
(41)

and energy-momentum tensor

Tµν = Πµφ∂νφ− gµνL = ∂µ∂νφ− gµνL (42)

The interaction term in the gravitational action is

Smatter =
1
2

∫
d4x

√
g(x)Tµν(x)hµν(x) (43)

and to lowest order in hµν we have

Smatter =
1
2

∫
d4x (hµν∂µφ∂νφ −TrhL) (44)

On the other hand, the cosmological action is, still to lowest order in hµν and expanding√
g = 1 + 1

2Trh+ ...

SΛ =
Λ

8πG

∫
d4x

(
1 +

1
2

Trh
)

(45)

We can say that to lowest order the coupling of gravity to the field φ produces a typical
source term for hµν , of the form hµν∂

µφ∂νφ, and subtracts from the cosmological constant Λ the
local density 8πGL(x), because we can write, apart from an additive constant,

Smatter + SΛ =
1
2

∫
d4xhµν∂

µφ∂νφ+
∫
d4xTrh

(
Λ

8πG
− L

)
(46)

This separation of the matter coupling in two parts looks in general quite arbitrary, but it
can be useful if the lagrangian density is such to affect locally the “natural” cosmological term
and set free gravitational fluctuations corresponding to virtual mass densities much larger than
the real density of the field φ.

An example will clarify our point. Suppose that φ represents some coherent fluid with the
density of ordinary matter (∼ 1 g/cm3). We have seen that at the scale of 1 cm the dipolar
fluctuations are cut-off according to eq. (30). For Λ equal to the cosmologically observed value
of ∼ 10−50 cm−2, the exponent k can take values up to k = 3, corresponding to fluctuations with
virtual sources of density ∼ 103 g/cm3. (This is a prudent estimate; for short-lasting fluctuations
– less than 1 s – and for those with r− = r+, the virtual mass density can be even higher.)

If the value of L in some region is comparable to Λ/8πG, this can introduce an inhomogene-
ity in the cut-off mechanism. The result will be a local inhomogeneity of the dipolar fluctuations,
which, given their strength, could dominate the effects of the coupling hµν∂µφ∂νφ to the real
matter.

Note that the magnitude of L depends on whether φ is itself “on shell” or not. For a
free, spatially homogeneous scalar field, for instance, the Klein-Gordon equation implies φ =
const. · e±imt. Therefore on shell one has L = 0 exactly, even though the single terms in L can
well be (for atomic-scale masses and gradients) of the order of 1033 cm−4.

The mechanism sketched above also has an Euclidean analogue [21], but a better under-
standing of the dipolar fluctuations is necessary before any progress in this direction can be
made.
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4 Conclusions

In the first part of this work we have studied the general features of “dipolar” zero modes of
the pure Einstein action, giving some explicit examples in the weak-field approximation. We
used a method based upon the classical Einstein equation with suitable virtual sources. Our aim
was to prove in a rigorous way the null-action property of these modes. For applications to the
quantum case we made reference to the (Lorentzian) functional integral. This represents just one
of the possible approaches to quantum gravity, but in fact also the Planck-scale fluctuations have
been studied through integral functional techniques [1]. It should be stressed that the numerical
estimates presented in Section 2.2 are only lower limits based on specific examples. The strength
of the fluctuations can be in general larger.

In the Discussion Section we have been less concerned with rigor. We have described some
paradoxical features of the large dipole fluctuations, and possible suppression processes. The
ADM energy of the dipolar fields can be both positive and negative, and turns out to be very
large compared to τ−1. If we admit (as is quite reasonable for the +/- shells) that this energy is
localized, the corresponding density appears large, too – even though the Ford-Roman inequalities
or similar bounds do not apply to quantum gravity, where the metric is not fixed.

The hypothesis of a scale-dependent cosmological constant remains at present speculative,
yet only the Λ-term seems to be capable of suppression at large scales. From the purely phe-
nomenological point of view, the existence of a negative (in our conventions) Λeff , which reduces
to the observed Λ ∼ 10−50 cm−2 at cosmological scale but is some orders of magnitude larger at
cm scale, is probably less disturbing than the existence of large quantum fluctuations [22].

Independently from the effective-Λ hypothesis, the results of Sections 2.4 and 3.3 show that
any local vacuum term of the form gµν(x)L(x) acts as a cutoff for the dipolar fluctuations, espe-
cially for those at large scale. This can cause local inhomogeneities, which are usually important
when dealing with vacuum fluctuations in quantum field theory, and deserve further investigation.
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